If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+21x+76=0
a = 1; b = 21; c = +76;
Δ = b2-4ac
Δ = 212-4·1·76
Δ = 137
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-\sqrt{137}}{2*1}=\frac{-21-\sqrt{137}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+\sqrt{137}}{2*1}=\frac{-21+\sqrt{137}}{2} $
| (3n-18)+(2n-27)=180 | | 90+2(x-12)=180 | | 5.25+7.5h=57.75 | | 16n^2+10=74 | | r/4+20=25 | | r-43=225 | | 7x+13+2x=76 | | 40+(4x-90=5x | | X÷100=x-32÷180 | | 9x2−7x−4=0 | | (4x-18)=(2x+6)+36= | | (3n-6)+62=180 | | 5=6a-1 | | d4+ 18=20 | | 3(-r-4)=6r+15 | | 7=c/5 | | 12x+3-3x-12=x+34 | | 5(5n-1)=-230 | | 36=4y+12 | | 14+4n=8+2n+4 | | 7(y-8)+24=X(y-6 | | 35x-7=49 | | 9u−10=–7+10u | | (8x+4)+124=180 | | 8-3x=2(x+78) | | 15x+10=40-2.5 | | 5^(2)*5^(x)=1 | | n/9+3=(-2) | | (x-16)=256 | | 7x-4x-8=56 | | -7v+3(v+6)=-22 | | 40=-4r |